notabot ,

This one I wondered about more because of the effect of atmospheric pressure(?) on melting point, such that I wondered if it would be worth using Fahrenheit’s Weird Brine ice slurry to get ~ -17.778 ° C instead. But that’s ofc also subject to air pressure influencing melting point so I’m unsure if it’d be worthwhile.

Varying air pressure is certainly a concern, but repeating the experiment, as you said, would help to reduce the error, as would being as close to sea level as possible. Interestingly, if you have your meter measure you could use that to measure atmospheric pressure by seeing how far you could raise water in a column by suction. At standard atmospheric pressure you should be able to lift fresh water 10.3m.

Relatively constant 9.81 m/s² gravity is also useful for deriving force as you mention, though it reminds me of learning, to my abject horror, in undergrad physics that gravity does vary quite a bit by geolocation :'D 9.81m/s² is a better starting point than nothing though

Gravity is altogether too unreliable and should be abolished. Failing that, You could measure the local gravity by measuring how far a rock falls in a fixed time, say one second, and calculating back from that. If the rock is heavy enough we can ignore air resistance as the effect will be smaller than our measurement error.

  • All
  • Subscribed
  • Moderated
  • Favorites
  • random
  • [email protected]
  • All magazines